Nutrient-stimulated insulin secretion in mouse islets is critically dependent on intracellular pH
نویسندگان
چکیده
BACKGROUND: Many mechanistic steps underlying nutrient-stimulated insulin secretion (NSIS) are poorly understood. The influence of intracellular pH (pHi) on insulin secretion is widely documented, and can be used as an investigative tool. This study demonstrates previously unknown effects of pHi-alteration on insulin secretion in mouse islets, which may be utilized to correct defects in insulin secretion. METHODS: Different components of insulin secretion in mouse islets were monitored in the presence and absence of forced changes in pHi. The parameters measured included time-dependent potentiation of insulin secretion by glucose, and direct insulin secretion by different mitochondrial and non-mitochondrial secretagogues. Islet pHi was altered using amiloride, removal of medium Cl-, and changing medium pH. Resulting changes in islet pHi were monitored by confocal microscopy using a pH-sensitive fluorescent indicator. To investigate the underlying mechanisms of the effects of pHi-alteration, cellular NAD(P)H levels were measured using two-photon excitation microscopy (TPEM). Data were analyzed using Student's t test. RESULTS: Time-dependent potentiation, a function normally absent in mouse islets, can be unmasked by a forced decrease in pHi. The optimal range of pHi for NSIS is 6.4-6.8. Bringing islet pHi to this range enhances insulin secretion by all mitochondrial fuels tested, reverses the inhibition of glucose-stimulated insulin secretion (GSIS) by mitochondrial inhibitors, and is associated with increased levels of cellular NAD(P)H. CONCLUSIONS: Pharmacological alteration of pHi is a potential means to correct the secretory defect in non-insulin dependent diabetes mellitus (NIDDM), since forcing islet pHi to the optimal range enhances NSIS and induces secretory functions that are normally absent.
منابع مشابه
Amiloride derivatives enhance insulin release in pancreatic islets from diabetic mice
BACKGROUND Amiloride derivatives, commonly used for their diuretic and antihypertensive properties, can also cause a sustained but reversible decrease of intracellular pH (pHi). Using dimethyl amiloride (DMA) on normal rodent pancreatic islets, we previously demonstrated the critical influence of islet pHi on insulin secretion. Nutrient-stimulated insulin secretion (NSIS) requires a specific pH...
متن کاملبررسی اثر گلوکزآمین بر فعالیت آنزیمهای گلوکوکیناز و هگزوکیناز پانکراس و ارتباط آن با ترشح انسولین از جزایر لانگرهانس موشهای صحرایی سالم و دیابتی نوع 2
Background: Glucokinase serves as a glucose sensor in pancreatic β-cells and plays a key role in glucose homeostasis and glucose-stimulated insulin secretion (GSIS). In the present study we examined the effect of glucosamine, a glucokinase inhibitor, on the pancreatic glucokinase and hexokinase activities and on insulin secretion from freshly rat pancreatic islets of Langerhans. Insulin concen...
متن کاملSalvianolic acid B improves insulin secretion from interleukin 1β-treated rat pancreatic islets: The role of PI3K-Akt signaling
Background and Objective: Oxidative stress induced by proinflammatory cytokines such as IL-1β plays a major role in β-cell destruction in diabetes type 1. Salvianolic acid B (Sal B) is a polyphenolic compound with antioxidant and protective effects. Thus, objective of this study was to assess the protection exerted by Sal B on isolated rat islets exposed to IL-1β and to investigate an underlyin...
متن کاملNormal Insulin Secretion from Immune-Protected Islets of Langerhans by PEGylation and Encapsulation in the Alginate-Chitosan-PEG
Background: Pancreatic islet transplantation is one of the most promising strategies for treating patients with type I diabetes mellitus.Objective: We aimed to assess the immunoisolation properties of the multilayer encapsulated islets using alginate-chitosan-PEG for immunoprotection and insulin secretion from the encapsulated islets induced under differe...
متن کاملCytosolic ratios of free INADPHI / INADP + I and INADHI / INAD + I in mouse pancreatic islets , and nutrient - induced insulin secretion
When the extracellular concentration of glucose was raised from 3 mm to 7 mm (the concentration interval in which fl-cell depolarization and the major decrease in K+ permeability occur), the cytosolic free [NADPH]/ [NADP+] ratio in mouse pancreatic islets increased by 29.5% . When glucose was increased to 20 mm, a 117% increase was observed. Glucose had no effect on the cytosolic free [NADH]/[N...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- BMC Endocrine Disorders
دوره 4 شماره
صفحات -
تاریخ انتشار 2004